Skip to content

13. Networking and Communications

The name could be quite scary , yet it wasn’t that much . Just kidding , it was a hell load of information !!

Group Assignment

Arduinos

A straight forward easy-looking connection between 2 arduinos .

We understood the concept and the code . It’s all Here.

I2C vs SPI

First , I did some research on communication protocols to understand the difference and be able to decide which one to use .

came across this Article it was very useful .

It seemed that I2C is less complicated especially in wiring , so I’m going for it .

Also , found a former student : Aby Michael documentation on I2C connection between Attiny 44 and Atmega 328 . It was very helpful .

I2C

Design

2 Boards of attiny 44 : teacher and student .

Used Kicad , getting quite handy around it by now . 2 simple boards with a button and led on each .

Milling and Soldering

Got the gcode from Fab Modules

Milled on a China Router 3040 using the OpenBuilds software .

Programming

One board will be the teacher and the other is the student .

The Led on student’s board blinks when it receives data .

Code for Teacher :

#include <Wire.h>  
#define I2C_SLAVE_ADDR  0x26   

int x = 0;
void setup() {
  // Start the I2C Bus as Master
  Wire.begin(); 
}
void loop() {
  Wire.beginTransmission(9); // transmit to device #9
  Wire.write(x);              // sends x 
  Wire.endTransmission();    // stop transmitting
  x++; // Increment x
  if (x > 5) x = 0; // `reset x once it gets 6
  delay(1000);
}

Code for Student :

#include <Wire.h>

#define ADDR 0x26            // i2c slave address (38)
#define LED1 10                 // ATtiny PA3

void setup(){
  pinMode(LED1 ,OUTPUT);          // for verification
  digitalWrite(4, HIGH);                 //pullup of SCL
  digitalWrite(6,HIGH);                 //pullup of SDA
  Wire.begin(ADDR); 
  delay(1000);                               // wait for a second
}

void loop(){
  byte byteRcvd = 0;
  if (Wire.available()){           // got I2C input!
    byteRcvd = Wire.read();     // get the byte from master
   // byteRcvd += 10;                     // add 10 to what's received
   // Wire.read()(byteRcvd);           // send it back to master

  if(byteRcvd!=0){
    digitalWrite(LED1, HIGH);     //blue led= receive
    delay(500);            
    //digitalWrite(LED1, LOW);    
    //delay(200); 
  }
  }
 }

Do you copy ?

Connections

Master board powered by FTDI cable .

Connected pins between boards as drawn , GND , VCC , SDA & SCK .

UART

my Instructor adviced me to make a UART protocol .

UART stands for Universal Asynchronous Receiver/Transmitter. It’s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller, or a stand-alone IC. A UART’s main purpose is to transmit and receive serial data.

Board

A bridge and 2 nodes ,

Node Design on kicad

Through Gimp

Fab Modules

Milled on MonoFab

Solder

Bridge Design on kicad

Through Gimp

Fab Modules

Milled on MonoFab

Solder

Programming

Code used

//
//
// hello.bus.45.c
//
// 9600 baud serial bus hello-world
//
// Neil Gershenfeld
// 11/24/10
//
// (c) Massachusetts Institute of Technology 2010
// Permission granted for experimental and personal use;
// license for commercial sale available from MIT.
//

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <string.h>

#define output(directions,pin) (directions |= pin) // set port direction for output
#define input(directions,pin) (directions &= (~pin)) // set port direction for input
#define set(port,pin) (port |= pin) // set port pin
#define clear(port,pin) (port &= (~pin)) // clear port pin
#define pin_test(pins,pin) (pins & pin) // test for port pin
#define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set
#define bit_delay_time 100 // bit delay for 9600 with overhead
#define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay
#define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay
#define led_delay() _delay_ms(100) // LED flash delay

#define led_port PORTB
#define led_direction DDRB
#define led_pin (1 << PB0)

#define serial_port PORTB
#define serial_direction DDRB
#define serial_pins PINB
#define serial_pin_in (1 << PB3)
#define serial_pin_out (1 << PB4)

#define node_id '0'

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) {
   //
   // read character into rxbyte on pins pin
   //    assumes line driver (inverts bits)
   //
   *rxbyte = 0;
   while (pin_test(*pins,pin))
      //
      // wait for start bit
      //
      ;
   //
   // delay to middle of first data bit
   //
   half_bit_delay();
   bit_delay();
   //
   // unrolled loop to read data bits
   //
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 0);
   else
      *rxbyte |= (0 << 0);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 1);
   else
      *rxbyte |= (0 << 1);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 2);
   else
      *rxbyte |= (0 << 2);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 3);
   else
      *rxbyte |= (0 << 3);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 4);
   else
      *rxbyte |= (0 << 4);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 5);
   else
      *rxbyte |= (0 << 5);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 6);
   else
      *rxbyte |= (0 << 6);
   bit_delay();
   if pin_test(*pins,pin)
      *rxbyte |= (1 << 7);
   else
      *rxbyte |= (0 << 7);
   //
   // wait for stop bit
   //
   bit_delay();
   half_bit_delay();
   }

void put_char(volatile unsigned char *port, unsigned char pin, char txchar) {
   //
   // send character in txchar on port pin
   //    assumes line driver (inverts bits)
   //
   // start bit
   //
   clear(*port,pin);
   bit_delay();
   //
   // unrolled loop to write data bits
   //
   if bit_test(txchar,0)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,1)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,2)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,3)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,4)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,5)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,6)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   if bit_test(txchar,7)
      set(*port,pin);
   else
      clear(*port,pin);
   bit_delay();
   //
   // stop bit
   //
   set(*port,pin);
   bit_delay();
   //
   // char delay
   //
   bit_delay();
   }

void put_string(volatile unsigned char *port, unsigned char pin, PGM_P str) {
   //
   // send character in txchar on port pin
   //    assumes line driver (inverts bits)
   //
   static char chr;
   static int index;
   index = 0;
   do {
      chr = pgm_read_byte(&(str[index]));
      put_char(&serial_port, serial_pin_out, chr);
      ++index;
      } while (chr != 0);
   }

void flash() {
   //
   // LED flash delay
   //
   clear(led_port, led_pin);
   led_delay();
   set(led_port, led_pin);
   }

int main(void) {
   //
   // main
   //
   static char chr;
   //
   // set clock divider to /1
   //
   CLKPR = (1 << CLKPCE);
   CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
   //
   // initialize output pins
   //
   set(serial_port, serial_pin_out);
   input(serial_direction, serial_pin_out);
   set(led_port, led_pin);
   output(led_direction, led_pin);
   //
   // main loop
   //
   while (1) {
      get_char(&serial_pins, serial_pin_in, &chr);
      flash();
      if (chr == node_id) {
         output(serial_direction, serial_pin_out);
         static const char message[] PROGMEM = "node ";
         put_string(&serial_port, serial_pin_out, (PGM_P) message);
         put_char(&serial_port, serial_pin_out, chr);
         put_char(&serial_port, serial_pin_out, 10); // new line
         led_delay();
         flash();
         input(serial_direction, serial_pin_out);
         }
      }
   }

Flashed the code and tested the nodes after they are connected through a bus .

Changed the node id for each board

for Bridge

#define node_id '0'

for Node 1

#define node_id '1'

for Node 2

#define node_id '2'

Using serial monitor in Arduino ..

Sending node 0 , node 1 , node 2

files

Download design files and code Here.


Last update: July 4, 2021